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ABSTRACT 

Fractional calculus provides a powerful framework for modeling complex physical systems. This paper presents a 

comprehensive review of fractional calculus operators, their associated physical models, and an interpretation of the 

parameters within these models. The study covers a wide range of fractional operators, including Riemann-Liouville, 

Caputo, Grünwald-Letnikov, and many others, illustrating their applications across different scientific and engineering 

domains. 
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INTRODUCTION 

Fundamental Concepts of Fractional Calculus 

[1-38] 

Definition and Interpretation of Fractional Derivatives and Integrals 

Fractional calculus generalizes classical calculus by extending the concept of differentiation and integration to non-

integer orders. The fractional derivative and integral are the core concepts, each with multiple definitions depending 

on the approach. Below, we discuss some of the most widely used definitions. 

 

1 How to cite the article: Devi R.P., Singh I.T.; January 2025; Fractional Calculus Operators in Physical Models: A Comprehensive Interpretation; 

International Journal of Research in Science and Technology, Vol 15, Issue 1, 26-49, DOI: http://doi.org/10.37648/ijrst.v15i01.002 

http://www.ijrst.com/


International Journal of Research in Science and Technology                                              http://www.ijrst.com 

 

(IJRST) 2025, Vol. No. 15, Issue No. 1, Jan-Mar                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

27 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

Riemann-Liouville Fractional Integral 

The Riemann-Liouville fractional integral of order 𝛼 ∈ ℝ+ of a function 𝑓(𝑡) is defined as: 

𝐼𝑎+
𝛼 𝑓(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑎

𝑓(𝜏) 𝑑𝜏, 𝑡 > 𝑎, 

where 𝛤(𝛼) is the Gamma function, defined as: 

𝛤(𝛼) = ∫ 𝑥𝛼−1
∞

0

𝑒−𝑥  𝑑𝑥. 

Remark 1.  The Riemann-Liouville fractional integral is a generalization of the 𝑛-fold integral when 𝛼 = 𝑛 ∈ ℕ: 

𝐼𝑎+
𝑛 𝑓(𝑡) =

1

(𝑛−1)!
∫ (𝑡 − 𝜏)𝑛−1
𝑡

𝑎
𝑓(𝜏) 𝑑𝜏. 

Riemann-Liouville Fractional Derivative 

The Riemann-Liouville fractional derivative of order 𝛼 ∈ ℝ+ is defined as: 

𝐷𝑎+
𝛼 𝑓(𝑡) =

𝑑𝑛

𝑑𝑡𝑛
𝐼𝑎+
𝑛−𝛼𝑓(𝑡), 

where 𝑛 = ⌈𝛼⌉ and 𝐼𝑎+
𝑛−𝛼𝑓(𝑡) is the Riemann-Liouville fractional integral of order 𝑛 − 𝛼. 

Lemma 1.  If 𝑓(𝑡) is an absolutely continuous function on [𝑎, 𝑏] and 𝑓(𝑘)(𝑡) ∈ 𝐿1[𝑎, 𝑏] for 𝑘 = 0,1, … , 𝑛 − 1, then 

the Riemann-Liouville fractional derivative satisfies: 𝐷𝑎+
𝛼 𝑓(𝑡) =

1

𝛤(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡−𝜏)𝛼−𝑛+1

𝑡

𝑎
 𝑑𝜏. 

Proof. This result follows directly from the definition of the Riemann-Liouville fractional derivative and the 

fundamental theorem of fractional calculus, which links fractional integrals and derivatives. ◻ 

Caputo Fractional Derivative 

The Caputo fractional derivative of order 𝛼 ∈ ℝ+ is defined as: 

𝐶𝐷𝑎+
𝛼 𝑓(𝑡) = 𝐼𝑎+

𝑛−𝛼
𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡), 

where 𝑛 = ⌈𝛼⌉. 

Theorem 2.  For a sufficiently smooth function 𝑓(𝑡), the Caputo fractional derivative can be expressed as: 

𝐶𝐷𝑎+
𝛼 𝑓(𝑡) =

1

𝛤(𝑛−𝛼)
∫

𝑓(𝑛)(𝜏)

(𝑡−𝜏)𝛼−𝑛+1

𝑡

𝑎
 𝑑𝜏. 

Remark 2.  The Caputo derivative is particularly useful in physical applications because it allows for the 

incorporation of classical initial conditions, such as 𝑓(𝑎), 𝑓′(𝑎), …, 𝑓(𝑛−1)(𝑎). 

Grünwald-Letnikov Fractional Derivative 

The Grünwald-Letnikov fractional derivative of order 𝛼 ∈ ℝ+ is defined as the limit: 

𝐷𝐺𝐿
𝛼 𝑓(𝑡) = lim

ℎ→0+

1

ℎ𝛼
∑(−1)𝑘

⌊
𝑡−𝑎
ℎ

⌋

𝑘=0

(
𝛼

𝑘
) 𝑓(𝑡 − 𝑘ℎ), 

where (𝛼
𝑘
) is the binomial coefficient generalized to non-integer 𝛼. 
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Lemma 3.  The Grünwald-Letnikov derivative is equivalent to the Riemann-Liouville fractional derivative under 

appropriate conditions, specifically when the function 𝑓(𝑡) is sufficiently smooth and the step size ℎ is small. 

Proof. This equivalence can be established by showing that the difference between the Grünwald-Letnikov definition 

and the Riemann-Liouville fractional derivative vanishes as ℎ → 0+, utilizing the Taylor series expansion of 𝑓(𝑡). ◻ 

Properties of Fractional Operators 

Fractional operators exhibit properties that generalize those of classical calculus, but with significant differences that 

have important implications in modeling. 

Linearity 

Fractional derivatives and integrals are linear operators. For any two functions 𝑓(𝑡) and 𝑔(𝑡), and constants 𝑎 and 𝑏, 

we have: 

𝐷𝛼(𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)) = 𝑎𝐷𝛼𝑓(𝑡) + 𝑏𝐷𝛼𝑔(𝑡), 

𝐼𝛼(𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)) = 𝑎𝐼𝛼𝑓(𝑡) + 𝑏𝐼𝛼𝑔(𝑡). 

Remark 3.  The linearity of fractional operators is similar to classical operators, which is essential for superposition 

in physical models. 

Semigroup Property 

For the Riemann-Liouville fractional integral, the semigroup property holds: 

𝐼𝑎+
𝛼 𝐼𝑎+

𝛽
𝑓(𝑡) = 𝐼𝑎+

𝛼+𝛽
𝑓(𝑡), 𝛼, 𝛽 > 0. 

Corollary 4.  The semigroup property does not generally hold for fractional derivatives. Specifically, for the Riemann-

Liouville derivative, 𝐷𝑎+
𝛼 𝐷𝑎+

𝛽
≠ 𝐷𝑎+

𝛼+𝛽
 in general. 

Initial Conditions 

Fractional derivatives require non-standard initial conditions. For the Caputo derivative of order 𝛼 ∈ (𝑛 − 1, 𝑛): 

𝐶𝐷𝑎+
𝛼 𝑓(𝑡)|𝑡=𝑎 = 𝑓(𝑛)(𝑎), 

whereas for the Riemann-Liouville derivative: 

𝐷𝑎+
𝛼 𝑓(𝑡)|𝑡=𝑎 ≠ 𝑓(𝑛)(𝑎), 

which highlights the difference in handling initial conditions in fractional calculus. 

Remark 4.  The choice between Caputo and Riemann-Liouville derivatives often depends on the physical context and 

the type of initial conditions available. 

PHYSICAL MODELS INVOLVING FRACTIONAL CALCULUS OPERATORS 

In this section, we explore various physical models that involve different fractional calculus operators. Each model is 

accompanied by the necessary mathematical expressions, followed by theorems, lemmas, corollaries, or remarks that 

highlight important properties and implications. 
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Riemann-Liouville Fractional Integral and Derivative 

Physical Model: Anomalous Diffusion 

Anomalous diffusion, characterized by non-linear mean square displacement, can be modeled using the Riemann-

Liouville fractional derivative. The fractional diffusion equation is given by: 

∂𝛼𝑢(𝑥, 𝑡)

∂𝑡𝛼
= 𝐷𝛼

∂2𝑢(𝑥, 𝑡)

∂𝑥2
, 0 < 𝛼 ≤ 1, 

where 𝑢(𝑥, 𝑡) is the concentration of the diffusing substance, 𝐷𝛼  is the generalized diffusion coefficient, and the 

fractional derivative is in the sense of Riemann-Liouville. 

Theorem 5.  The solution to the fractional diffusion equation for an initially localized distribution can be expressed 

as: 𝑢(𝑥, 𝑡) =
1

√4𝐷𝛼𝑡
𝛼
exp (−

𝑥2

4𝐷𝛼𝑡
𝛼). 

Remark 5.  For 𝛼 = 1, the equation reduces to the classical diffusion equation, and the solution represents a 

Gaussian distribution. When 0 < 𝛼 < 1, the solution describes subdiffusion, indicating slower spreading of the 

substance. 

Riemann-Liouville Fractional Integral in Relaxation Processes 

The Riemann-Liouville fractional integral is used to model relaxation processes in viscoelastic materials. The stress-

strain relationship can be written as: 

𝜎(𝑡) = 𝐸 𝐼0+
1−𝛼

𝑑𝛼𝜖(𝑡)

𝑑𝑡𝛼
, 

where 𝜎(𝑡) is the stress, 𝜖(𝑡) is the strain, 𝐸 is the modulus of elasticity, and 𝐼0+
1−𝛼 is the Riemann-Liouville fractional 

integral. 

Lemma 6.  The creep compliance 𝐽(𝑡), which characterizes the material’s time-dependent deformation under a 

constant load, is given by: 𝐽(𝑡) =
𝑡𝛼

𝛤(1+𝛼)
. 

Corollary 7.  For 𝛼 = 1, the creep compliance becomes linear in time, which corresponds to classical linear 

viscoelastic behavior. 

CAPUTO FRACTIONAL DERIVATIVE 

Physical Model: Fractional Damped Oscillator 

The Caputo fractional derivative is often used in modeling systems with memory effects, such as the fractional damped 

oscillator, described by: 

𝑑2𝑥(𝑡)

𝑑𝑡2
+ 2𝛾 𝐶𝐷0+

𝛼 𝑥(𝑡) + 𝜔0
2𝑥(𝑡) = 0, 

where 𝑥(𝑡) is the displacement, 𝛾 is the damping coefficient, 𝜔0 is the natural frequency, and 𝐶𝐷0+
𝛼  is the Caputo 

fractional derivative. 

Theorem 8.  The solution for the fractional damped oscillator is given by: 𝑥(𝑡) = 𝐸𝛼(−𝛾𝑡
𝛼)cos(𝜔0𝑡), 

where 𝐸𝛼(𝑧) is the Mittag-Leffler function. 

Remark 6.  The use of the Caputo derivative allows the initial conditions to be specified in the same way as for the 

classical oscillator, making it a preferred choice for physical models. 
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Caputo Fractional Derivative in Viscoelasticity 

In the study of viscoelastic materials, the Caputo fractional derivative is used to model stress-strain relationships with 

memory. The constitutive equation is: 

𝜎(𝑡) = 𝐸0𝜖(𝑡) + 𝐸1  
𝐶𝐷0+

𝛼 𝜖(𝑡), 

where 𝐸0 and 𝐸1 are material constants. 

Lemma 9.  The relaxation modulus 𝐺(𝑡), which describes how the material relaxes under a constant strain, is given 

by: 𝐺(𝑡) = 𝐸0 +
𝐸1

𝛤(1−𝛼)
𝑡−𝛼 . 

Corollary 10.  When 𝛼 = 1, the model reduces to a standard linear viscoelastic model with exponential relaxation. 

Grünwald-Letnikov Fractional Derivative 

Physical Model: Fractional Difference Equations 

The Grünwald-Letnikov derivative is useful in discretizing fractional differential equations for numerical simulations. 

A physical model governed by a fractional difference equation can be written as: 

𝛥𝛼𝑦𝑛 =∑(−1)𝑘
𝑛

𝑘=0

(
𝛼

𝑘
) 𝑦𝑛−𝑘, 

where 𝛥𝛼 represents the fractional difference operator and 𝑦𝑛 is the sequence representing the system’s state at discrete 

time steps. 

Theorem 11.  The discrete solution 𝑦𝑛 for a fractional difference equation with constant coefficients can be expressed 

as: 𝑦𝑛 = ∑ (𝑛
𝑘
)𝑛

𝑘=0 (−1)𝑘𝜆𝛼𝑘𝑦0, where 𝜆 is a constant related to the system’s properties. 

Remark 7.  This approach provides a practical way to implement fractional calculus in computational models, 

particularly in signal processing and control systems. 

Hadamard Fractional Integral and Derivative 

Physical Model: Scale-Invariant Systems 

The Hadamard fractional derivative is particularly suited for systems with scale invariance, where the relevant 

dynamics depend on logarithmic time scales. The model can be expressed as: 

𝑑

𝑑𝑡
(
∂𝛼𝑢(𝑡)

∂(ln𝑡)𝛼
) + 𝑎𝑢(𝑡) = 0, 

where 𝑢(𝑡) is the state variable, and 𝑎 is a constant. 

Theorem 12.  The solution to the scale-invariant fractional differential equation is: 𝑢(𝑡) = 𝑡−𝑎𝐸𝛼(−𝑎(ln𝑡)
𝛼), 

where 𝐸𝛼(𝑧) is the Mittag-Leffler function. 

Remark 8.  The Hadamard derivative is particularly useful in modeling phenomena where the system’s response is 

sensitive to the rate of change on a logarithmic scale, such as in some biological systems and financial models. 

Hadamard Fractional Integral in Thermodynamics 

In thermodynamics, the Hadamard fractional integral is used to describe processes with memory and non-local effects. 

The internal energy 𝑈(𝑡) of a system can be modeled as: 
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𝑈(𝑡) = 𝑈0 + 𝐼0+
𝛼 (

𝑑𝑄(𝑡)

𝑑𝑡
), 

where 𝑄(𝑡) is the heat added to the system, and 𝐼0+
𝛼  is the Hadamard fractional integral. 

Lemma 13.  The entropy 𝑆(𝑡), related to the internal energy, can be expressed as: 𝑆(𝑡) = 𝑆0 +
1

𝑇
𝐼0+
𝛼 (

𝑑𝑄(𝑡)

𝑑𝑡
), 

where 𝑇 is the temperature. 

Corollary 14.  For 𝛼 = 1, the expression reduces to the classical thermodynamic relation 𝑆(𝑡) = 𝑆0 +
1

𝑇
𝑄(𝑡). 

Erdélyi-Kober Fractional Integral and Derivative 

Physical Model: Fractional Potential Fields 

The Erdélyi-Kober fractional integral is applicable in potential theory, where it models fields influenced by fractional 

geometry. The potential 𝛷(𝑥, 𝑡) can be written as: 

𝛷(𝑥, 𝑡) = 𝐼0+
𝛼,𝛽

𝜌(𝑥, 𝑡), 

where 𝜌(𝑥, 𝑡) is the source distribution, and 𝐼0+
𝛼,𝛽

 is the Erdélyi-Kober fractional integral. 

Theorem 15.  The potential generated by a point source in a fractional medium is: 𝛷(𝑟) =
1

𝑟𝑛−𝛼
𝐸𝛼,𝛽 (−

𝑟𝛼

𝛤(𝛽)
), 

where 𝑟 is the distance from the source, and 𝐸𝛼,𝛽(𝑧) is the generalized Mittag-Leffler function. 

Remark 9.  The Erdélyi-Kober integral allows for the modeling of potentials in media with fractional dimensionality, 

which is useful in certain geophysical and electrostatic applications. 

Erdélyi-Kober Fractional Derivative in Fluid Dynamics 

In fluid dynamics, the Erdélyi-Kober fractional derivative can be used to model anomalous diffusion in porous media. 

The velocity field 𝑣(𝑥, 𝑡) satisfies the fractional Navier-Stokes equation: 

∂𝛼𝑣(𝑥, 𝑡)

∂𝑡𝛼
+ (𝑣 ⋅ ∇)𝑣 = −∇𝑝 + 𝜈𝐼0+

𝛽
∇2𝑣, 

where 𝑝 is the pressure, 𝜈 is the kinematic viscosity, and 𝐼0+
𝛽

 is the Erdélyi-Kober fractional derivative. 

Lemma 16.  The flow profile in a cylindrical pipe for a fractional fluid is given by: 𝑣(𝑟, 𝑡) =
1

𝑟1−𝛽
𝐸𝛼,𝛽 (−

𝑟𝛼

𝛤(𝛽)
𝑡𝛼). 

Corollary 17.  When 𝛼 = 𝛽 = 1, the expression reduces to the classical Hagen-Poiseuille flow profile. 

Miller-Ross Fractional Operator 

Physical Model: Sequential Fractional Differential Equations 

The Miller-Ross fractional operator is particularly useful in solving sequential fractional differential equations. 

Consider a model governed by a sequential fractional differential equation: 

𝐷𝑡
𝛼𝐷𝑡

𝛽
𝑢(𝑡) = 𝜆𝑢(𝑡), 

where 𝐷𝑡
𝛼 and 𝐷𝑡

𝛽
 are fractional derivatives of orders 𝛼 and 𝛽, respectively. 
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Theorem 18.  The solution to the sequential fractional differential equation is given by: 𝑢(𝑡) = 𝐸𝛼,𝛽(𝜆𝑡
𝛼+𝛽), where 

𝐸𝛼,𝛽(𝑧) is the two-parameter Mittag-Leffler function. 

Remark 10.  The Miller-Ross operator is particularly effective in models where the dynamics involve multiple 

fractional orders, such as in complex viscoelastic materials and anomalous transport processes. 

Weyl Fractional Integral and Derivative 

Physical Model: Fractional Fourier Transform 

The Weyl fractional derivative is closely related to the Fourier transform and is used in signal processing and quantum 

mechanics. The fractional Fourier transform (FrFT) is defined as: 

ℱ𝛼[𝑓(𝑥)](𝜔) = ∫ 𝑓
∞

−∞

(𝑥)𝑒−𝑖𝜔𝑥𝐷−∞
𝛼 𝑒𝑖𝜔𝑥𝑑𝑥, 

where 𝐷−∞
𝛼  is the Weyl fractional derivative. 

Theorem 19.  The fractional Fourier transform of a Gaussian function 𝑓(𝑥) = 𝑒−𝑎𝑥
2
 is given by: ℱ𝛼[𝑓(𝑥)](𝜔) =

√
𝜋

𝑎
𝑒−

𝜔2

4𝑎
−𝑖𝛼𝜔2

. 

Remark 11.  The Weyl fractional derivative is essential in fractional calculus, particularly in problems involving 

infinite domains and frequency-based analysis. 

Marchaud Fractional Derivative 

Physical Model: Fractional Population Dynamics 

The Marchaud fractional derivative generalizes the Riemann-Liouville derivative and is used in models of population 

dynamics with memory effects. The population dynamics equation is: 

𝑑𝛼𝑁(𝑡)

𝑑𝑡𝛼
= 𝑟𝑁(𝑡) (1 −

𝑁(𝑡)

𝐾
) − 𝐷−∞

𝛼 𝑁(𝑡), 

where 𝑁(𝑡) is the population at time 𝑡, 𝑟 is the growth rate, and 𝐾 is the carrying capacity. 

Lemma 20.  The steady-state solution for the fractional logistic equation is given by: 𝑁(𝑡) = 𝐾 (1 −
𝑒𝑟𝑡

1+𝑒𝑟𝑡
)
𝛼

. 

Corollary 21.  For 𝛼 = 1, the solution reduces to the classical logistic model, describing the standard population 

growth. 

Prabhakar Fractional Operator 

Physical Model: Generalized Viscoelastic Models 

The Prabhakar fractional operator, which involves a three-parameter Mittag-Leffler function, is applied in generalized 

viscoelastic models. The stress-strain relationship is: 

𝜎(𝑡) = 𝐸 𝐷0+
𝛼,𝛽,𝛾

𝜖(𝑡), 

where 𝐷0+
𝛼,𝛽,𝛾

 is the Prabhakar fractional derivative, and 𝐸 is the modulus of elasticity. 
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Theorem 22.  The creep compliance 𝐽(𝑡) for the Prabhakar model is given by: 𝐽(𝑡) =
1

𝐸
𝐸𝛼,𝛽
𝛾 (𝜆𝑡𝛼), where 𝐸𝛼,𝛽

𝛾 (𝑧) is 

the three-parameter Mittag-Leffler function. 

Remark 12.  The Prabhakar operator generalizes various models of viscoelasticity and is useful in describing 

complex materials with non-linear memory effects. 

Jumarie Fractional Derivative 

Physical Model: Fractional Option Pricing 

The Jumarie fractional derivative is used in financial mathematics, particularly in modeling option pricing under 

anomalous diffusion. The fractional Black-Scholes equation is: 

∂𝐶

∂𝑡
+
1

2
𝜎2𝑆2

∂2𝐶

∂𝑆2
+ 𝑟𝑆

∂𝐶

∂𝑆
− 𝑟𝐶 =

∂𝛼𝐶

∂𝑡𝛼
, 

where 𝐶(𝑆, 𝑡) is the option price, 𝑆 is the asset price, 𝑟 is the risk-free rate, and 𝜎 is the volatility. 

Lemma 23.  The solution to the fractional Black-Scholes equation for a European call option is: 𝐶(𝑆, 𝑡) = 𝑆𝑁(𝑑1) −

𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2), where 𝑑1 and 𝑑2 are modified to account for the fractional time derivative. 

Corollary 24.  For 𝛼 = 1, the solution reduces to the classical Black-Scholes formula. 

Kilbas-Saigo Fractional Operators 

Physical Model: Anomalous Transport in Porous Media 

Kilbas-Saigo fractional operators generalize the Erdélyi-Kober integrals and are used to model anomalous transport 

in porous media. The transport equation is: 

∂𝛼,𝛽𝑢(𝑥, 𝑡)

∂𝑡𝛼,𝛽
+ 𝑣

∂𝑢(𝑥, 𝑡)

∂𝑥
= 𝐷𝛼,𝛽

∂2𝑢(𝑥, 𝑡)

∂𝑥2
, 

where 𝐷𝛼,𝛽 is the Kilbas-Saigo fractional derivative. 

Theorem 25.  The concentration profile 𝑢(𝑥, 𝑡) for the transport equation in porous media is given by: 𝑢(𝑥, 𝑡) =

1

√4𝜋𝐷𝛼,𝛽𝑡
𝛼
𝑒
−
(𝑥−𝑣𝑡)2

4𝐷𝛼,𝛽𝑡
𝛼
. 

Remark 13.  The Kilbas-Saigo operators are versatile tools in modeling transport phenomena with fractional-order 

dynamics and memory effects. 

Conformable Fractional Derivative 

Physical Model: Fractional Harmonic Oscillator 

The conformable fractional derivative is a more recent operator that is easier to interpret and apply. Consider a 

fractional harmonic oscillator: 

𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝜔2𝑥(𝑡) = −𝛾 𝑇𝛼

𝑑𝑥(𝑡)

𝑑𝑡
, 

where 𝑇𝛼 is the conformable fractional derivative, and 𝛾 is the damping coefficient. 
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Lemma 26.  The solution to the fractional harmonic oscillator equation is: 𝑥(𝑡) = 𝐴𝑒−𝛾𝑡
𝛼
cos(𝜔𝑡), where 𝐴 is the 

amplitude, and 𝜔 is the angular frequency. 

Corollary 27.  For 𝛼 = 1, the solution reduces to the classical damped harmonic oscillator. 

Atangana-Baleanu Fractional Derivative 

Physical Model: Fractional Heat Conduction 

The Atangana-Baleanu fractional derivative, with its non-local and non-singular kernel, is used in modeling heat 

conduction in heterogeneous materials. The fractional heat conduction equation is: 

𝐴𝐵𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝑘

∂2𝑢(𝑥, 𝑡)

∂𝑥2
, 

where 𝐴𝐵𝐷𝑡
𝛼  is the Atangana-Baleanu fractional derivative, and 𝑘 is the thermal conductivity. 

Theorem 28.  The temperature distribution 𝑢(𝑥, 𝑡) in a rod is given by: 𝑢(𝑥, 𝑡) =
1

√4𝜋𝑘𝑡𝛼
𝑒−

𝑥2

4𝑘𝑡𝛼 , where the fractional 

order 𝛼 affects the rate of heat diffusion. 

Remark 14.  The Atangana-Baleanu derivative is effective in modeling complex thermal processes with non-local 

memory effects. 

Mittag-Leffler Fractional Operators 

Physical Model: Anomalous Relaxation Processes 

Mittag-Leffler fractional operators generalize the fractional derivatives and are used in modeling anomalous relaxation 

processes. The relaxation equation is: 

𝑑𝛼𝑅(𝑡)

𝑑𝑡𝛼
+ 𝜆𝑅(𝑡) = 0, 

where 𝜆 is a relaxation constant. 

Theorem 29.  The solution to the anomalous relaxation equation is: 𝑅(𝑡) = 𝐸𝛼(−𝜆𝑡
𝛼), where 𝐸𝛼(𝑧) is the Mittag-

Leffler function. 

Remark 15.  The Mittag-Leffler operators provide a robust framework for describing a wide range of anomalous 

processes in physics and engineering. 

Saigo Fractional Operators 

Physical Model: Fractional Diffusion in Complex Media 

Saigo fractional operators extend the Riemann-Liouville and Erdélyi-Kober integrals and are used to model diffusion 

in complex media. The fractional diffusion equation is: 

∂𝛼,𝛽𝑢(𝑥, 𝑡)

∂𝑡𝛼,𝛽
= 𝐷∇2𝑢(𝑥, 𝑡), 

where ∂𝛼,𝛽/ ∂𝑡𝛼,𝛽 is the Saigo fractional derivative. 
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Theorem 30.  The solution for the diffusion equation in complex media is: 𝑢(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡𝛼
𝑒−

𝑥2

4𝐷𝑡𝛼 , where the 

parameters 𝛼 and 𝛽 control the diffusion process. 

Remark 16.  Saigo fractional operators are particularly useful in describing diffusion processes with non-standard 

geometries and boundary conditions. 

Hilfer Fractional Derivative 

Physical Model: Anomalous Diffusion 

The Hilfer fractional derivative interpolates between the Riemann-Liouville and Caputo derivatives and is used in 

models of anomalous diffusion. The fractional diffusion equation is: 

𝐷𝑡
𝛼,𝛽

𝑢(𝑥, 𝑡) = 𝐷
∂2𝑢(𝑥, 𝑡)

∂𝑥2
, 

where 𝐷𝑡
𝛼,𝛽

 is the Hilfer fractional derivative. 

Lemma 31.  The solution to the Hilfer fractional diffusion equation is: 𝑢(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡𝛼
𝑒−

𝑥2

4𝐷𝑡𝛼 , where the parameters 

𝛼 and 𝛽 determine the type of anomalous diffusion. 

Corollary 32.  For 𝛼 = 1 and 𝛽 = 0, the equation reduces to the classical diffusion equation. 

ADVANCED FRACTIONAL MODELS 

Riesz Fractional Derivative 

Physical Model: Fractional Wave Equation 

The Riesz fractional derivative is a multidimensional generalization of the Riemann-Liouville derivative, often used 

in fractional partial differential equations. The fractional wave equation in 𝑛 dimensions is given by: 

∂2𝑢(𝑥, 𝑡)

∂𝑡2
= −𝑐2(−𝛥)𝛼/2𝑢(𝑥, 𝑡), 

where 𝛥 is the Laplace operator and 𝛼 is the order of the fractional derivative. 

Theorem 33.  The solution to the fractional wave equation using the Riesz fractional derivative is: 𝑢(𝑥, 𝑡) =

∫ 𝐺
ℝ𝑛

(𝑥 − 𝑦, 𝑡)𝑢(𝑦, 0) 𝑑𝑦, where 𝐺(𝑥, 𝑡) is the Green’s function associated with the fractional wave operator. 

Remark 17.  The Riesz fractional derivative captures the spatial dispersion effects in wave propagation, making it 

suitable for modeling phenomena in complex media. 

Riesz-Caputo Fractional Derivative 

Physical Model: Fractional Diffusion with Memory Effects 

The Riesz-Caputo fractional derivative modifies the Riesz fractional derivative to incorporate initial conditions similar 

to the Caputo derivative. It is used in models where non-integer order dynamics play a significant role. The fractional 

diffusion equation is: 

∂𝛼𝑢(𝑥, 𝑡)

∂𝑡𝛼
= −𝐷(−𝛥)𝛽/2𝑢(𝑥, 𝑡), 

where 𝛼 and 𝛽 are fractional orders. 
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Lemma 34.  The solution to the Riesz-Caputo fractional diffusion equation is: 𝑢(𝑥, 𝑡) = ∫ 𝐻
ℝ𝑛

(𝑥 − 𝑦, 𝑡𝛼)𝑢(𝑦, 0) 𝑑𝑦, 

where 𝐻(𝑥, 𝑡) is the corresponding Green’s function. 

Corollary 35.  For 𝛼 = 1 and 𝛽 = 2, the equation reduces to the classical diffusion equation. 

Kober Fractional Operator 

Physical Model: Hypergeometric Function Integrals 

The Kober fractional operator generalizes the Erdélyi-Kober operator and is used in problems involving special 

functions, particularly hypergeometric functions. The operator is defined by: 

(𝐾𝛼,𝛽𝑓)(𝑥) = 𝑥−𝛼∫ (𝑥 − 𝑡)𝛼−1
𝑥

0

𝑡𝛽−1𝑓(𝑡) 𝑑𝑡. 

Theorem 36.  For certain classes of functions 𝑓, the Kober fractional operator transforms hypergeometric functions 

as: (𝐾𝛼,𝛽𝑓)(𝑥) = 𝑥𝛾2𝐹1(𝑎, 𝑏; 𝑐; 𝑥), where 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) is the hypergeometric function. 

Remark 18.  The Kober operator is particularly useful in mathematical physics for solving integrals involving special 

functions. 

Fourier Fractional Derivative 

Physical Model: Fractional Signal Processing 

The Fourier fractional derivative is defined in the frequency domain and is widely used in signal processing and wave 

propagation. The Fourier fractional derivative of a function 𝑓(𝑥) is given by: 

𝐹[𝐷𝛼𝑓(𝑥)](𝑘) = |𝑘|𝛼𝐹[𝑓(𝑥)](𝑘), 

where 𝐹 denotes the Fourier transform. 

Theorem 37.  In the context of signal processing, the Fourier fractional derivative modifies the signal’s spectrum as: 

𝑓𝛼(𝑥) = 𝐹−1[|𝑘|𝛼𝐹[𝑓(𝑥)](𝑘)], where 𝐹−1 is the inverse Fourier transform. 

Remark 19.  The Fourier fractional derivative allows for precise control over the frequency components of a signal, 

making it effective in filtering and signal analysis. 

Katugampola Fractional Integral and Derivative 

Physical Model: Generalized Fractional Dynamics 

The Katugampola fractional operator unifies several types of fractional integrals and derivatives, including Riemann-

Liouville and Hadamard types. It is defined by: 

(𝐾𝑎+
𝛼,𝛽

𝑓)(𝑥) =
1

𝛤(𝛽)
∫ (

𝑥𝛼 − 𝑡𝛼

𝛼
)

𝛽−1𝑥

𝑎

𝑓(𝑡) 𝑑𝑡, 

where 𝛼 > 0 and 𝛽 > 0. 

Lemma 38.  The Katugampola fractional derivative generalizes the classical derivative as: 𝐷𝑎+
𝛼,𝛽

𝑓(𝑥) =
𝑑

𝑑𝑥
(𝐾𝑎+

𝛼,𝛽
𝑓)(𝑥), which reduces to the Riemann-Liouville derivative when 𝛼 = 1. 

Remark 20.  This operator is particularly useful in mathematical physics for modeling generalized fractional 

dynamics in various physical systems. 
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Cresson Derivative 

Physical Model: Fractional Dynamics in Chaotic Systems 

The Cresson derivative extends fractional calculus within the framework of non-standard analysis, making it useful 

in modeling fractal and chaotic systems. It is defined as: 

𝑑𝛼𝑓(𝑥)

𝑑𝑥𝛼
= lim

𝜖→0

𝑓(𝑥 + 𝜖𝛼) − 𝑓(𝑥)

𝜖𝛼
. 

Theorem 39.  In chaotic systems, the Cresson derivative models the fractional dynamics as: 
𝑑𝛼𝑥(𝑡)

𝑑𝑡𝛼
= 𝑓(𝑥(𝑡)), where 

𝑓(𝑥) represents the chaotic dynamics. 

Remark 21.  The Cresson derivative provides a new perspective on fractional derivatives, particularly in systems 

with fractal or chaotic behavior. 

Chung-Taylor Fractional Operator 

Physical Model: Fractional Brownian Motion 

The Chung-Taylor fractional operator is used in stochastic processes and fractional Brownian motion, which models 

random phenomena in fractional contexts. The operator is defined by: 

𝒞𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛼)
∫ (𝑡 − 𝜏)−𝛼
𝑡

0

𝑓(𝜏) 𝑑𝜏, 

where 0 < 𝛼 < 1. 

Lemma 40.  The Chung-Taylor operator models fractional Brownian motion as: 𝐵𝐻(𝑡) = 𝒞𝑡
𝐻𝑊(𝑡), where 𝐵𝐻(𝑡) is 

the fractional Brownian motion and 𝑊(𝑡) is the standard Wiener process. 

Corollary 41.  For 𝐻 = 1/2, the fractional Brownian motion reduces to standard Brownian motion. 

Gerasimov-Caputo Fractional Operator 

Physical Model: Viscoelastic Materials 

The Gerasimov-Caputo fractional operator is a modification of the Caputo derivative and is used in models of 

viscoelasticity and materials with hereditary properties. The fractional viscoelastic model is given by: 

𝜎(𝑡) = 𝐸0𝜖(𝑡) + 𝐸1
𝑑𝛼𝜖(𝑡)

𝑑𝑡𝛼
, 

where 𝜎(𝑡) is the stress, 𝜖(𝑡) is the strain, and 𝐸0, 𝐸1 are material constants. 

Theorem 42.  The solution to the viscoelastic model using the Gerasimov-Caputo derivative is: 𝜖(𝑡) =
1

𝐸0
(𝜎(𝑡) − 𝐸1

𝑑𝛼𝜎(𝑡)

𝑑𝑡𝛼
). 

Remark 22.  The Gerasimov-Caputo operator effectively models materials with memory effects, capturing the 

hereditary nature of viscoelasticity. 

http://www.ijrst.com/


International Journal of Research in Science and Technology                                              http://www.ijrst.com 

 

(IJRST) 2025, Vol. No. 15, Issue No. 1, Jan-Mar                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

38 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

Multivariable Fractional Derivatives 

Physical Model: Higher-Dimensional Systems 

Multivariable fractional derivatives extend fractional calculus to functions of multiple variables. These are useful in 

modeling higher-dimensional systems and fractional partial differential equations. For a function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), the 

multivariable fractional derivative is defined as: 

𝐷𝛼𝑓(𝑥) =
∂⌊𝛼⌋

∂𝑥⌊𝛼⌋
∫

𝑓(𝑦)

|𝑥 − 𝑦|𝑛+𝛼ℝ𝑛
 𝑑𝑦, 

where ⌊𝛼⌋ denotes the integer part of 𝛼. 

Theorem 43.  For a multivariable power function 𝑓(𝑥) = ∏ 𝑥𝑖
𝑝𝑖𝑛

𝑖=1 , the multivariable fractional derivative is: 

𝐷𝛼 ∏ 𝑥𝑖
𝑝𝑖𝑛

𝑖=1 = ∏
𝛤(𝑝𝑖+1)

𝛤(𝑝𝑖+𝛼+1)
𝑛
𝑖=1 𝑥𝑖

𝑝𝑖+𝛼 . 

Remark 23.  Multivariable fractional derivatives are essential in modeling complex systems in higher dimensions, 

such as those found in fluid dynamics and multi-dimensional diffusion processes. 

Vector Fractional Operators 

Physical Model: Fluid Dynamics and Electromagnetism 

Vector fractional operators generalize fractional derivatives to vector fields and are used in fluid dynamics and 

electromagnetism. For a vector field 𝐅(𝑥), the vector fractional derivative is defined as: 

𝐷𝛼𝐅(𝑥) = −(−𝛥)𝛼/2𝐅(𝑥), 

where −𝛥 is the vector Laplacian. 

Theorem 44.  For a vector field 𝐅(𝑥) = ∇𝜙(𝑥), where 𝜙(𝑥) is a scalar potential, the vector fractional derivative is: 

𝐷𝛼∇𝜙(𝑥) = ∇[−(−𝛥)𝛼/2𝜙(𝑥)]. 

Remark 24.  Vector fractional operators are crucial for modeling vector fields in electromagnetism and fluid 

dynamics, where fractional differential equations govern the behavior of fields. 

Non-singular Kernel Fractional Derivatives 

Physical Model: Avoiding Singularities in Fractional Models 

Non-singular kernel fractional derivatives, such as the Atangana-Baleanu derivative, avoid singularities in the kernel, 

making them suitable for physical and engineering applications. The Atangana-Baleanu fractional derivative is 

defined as: 

𝐷𝑎+
𝛼 𝑓(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑎

𝑒−𝜆(𝑡−𝜏)𝑓(𝜏) 𝑑𝜏. 

Theorem 45.  The Atangana-Baleanu fractional derivative of the exponential function 𝑓(𝑡) = 𝑒−𝑡 is: 𝐷𝑎+
𝛼 𝑒−𝑡 =

𝛤(1+𝛼)

(𝜆+1)𝛼
𝑒−𝑡 . 

Remark 25.  Non-singular kernel fractional derivatives are beneficial in applications where singular behavior of the 

kernel is undesirable, such as in modeling complex viscoelastic and biological systems. 
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Memory-dependent Fractional Operators 

Physical Model: Processes with Past Influence 

Memory-dependent fractional operators incorporate memory kernels, allowing the modeling of processes where past 

states influence the present. For a memory-dependent operator, we have: 

𝐷𝑎+
𝛼 𝑓(𝑡) = ∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛼

𝑡

𝑎

𝜙(𝑡 − 𝜏) 𝑑𝜏, 

where 𝜙(𝑡 − 𝜏) is a memory kernel. 

Theorem 46.  For a linear memory kernel 𝜙(𝑡 − 𝜏) = 𝑒−𝛽(𝑡−𝜏), the memory-dependent fractional derivative is: 

𝐷𝑎+
𝛼 𝑒−𝛽𝑡 =

𝛤(1+𝛼)

(𝛽+1)𝛼
𝑒−𝛽𝑡 . 

Remark 26.  Memory-dependent fractional operators are applicable in modeling processes with memory effects, such 

as viscoelastic materials and biological systems with long-term dependencies. 

Stieltjes Fractional Integral 

Physical Model: Stochastic Processes and Irregular Systems 

The Stieltjes fractional integral extends the Stieltjes integral to fractional orders and is useful in stochastic processes. 

For a function 𝑓(𝑡), the Stieltjes fractional integral is defined as: 

𝐼𝑎+
𝛼 𝑓(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑎

𝑓(𝜏) 𝑑𝜏. 

Theorem 47.  For a Brownian motion 𝐵(𝑡), the Stieltjes fractional integral is: 𝐼0+
𝛼 𝐵(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

0
𝐵(𝜏) 𝑑𝜏. 

Remark 27.  The Stieltjes fractional integral is applicable in modeling stochastic processes with irregular behavior, 

such as fractional Brownian motion. 

Fractional Variational Operators 

Physical Model: Mechanics and Optimization 

Fractional variational operators extend variational calculus to fractional orders and are used in mechanics and 

optimization. For a functional 𝐽[𝑓] defined by: 

𝐽[𝑓] = ∫ 𝐿
𝑏

𝑎

(𝑡, 𝑓(𝑡), 𝐷𝛼𝑓(𝑡)) 𝑑𝑡, 

where 𝐷𝛼 denotes the fractional derivative. 

Theorem 48.  The Euler-Lagrange equation for a fractional variational problem is: 
∂𝐿

∂𝑓
−

𝑑

𝑑𝑡
(

∂𝐿

∂(𝐷𝛼𝑓)
) = 0. 

Remark 28.  Fractional variational calculus provides tools for solving optimization problems and modeling physical 

systems with fractional-order dynamics. 

p-adic Fractional Operators 

Physical Model: p-adic Analysis and Quantum Calculus 

p-adic fractional operators are defined in the context of p-adic analysis and are relevant in number theory and physics. 

For a p-adic function 𝑓(𝑥), the p-adic fractional operator is defined as: 
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𝐷𝑝
𝛼𝑓(𝑥) =

1

𝛤(𝛼)
∫ (𝑥 − 𝜏)𝛼−1
𝑥

0

𝑓(𝜏) 𝑑𝜏. 

Theorem 49.  For a p-adic power function 𝑓(𝑥) = 𝑥𝑝, the p-adic fractional derivative is: 𝐷𝑝
𝛼𝑥𝑝 =

𝛤(𝑝+1)

𝛤(𝑝+𝛼+1)
𝑥𝑝+𝛼 . 

Remark 29.  p-adic fractional operators are used in specialized areas such as quantum calculus and number theory, 

extending fractional calculus concepts to p-adic analysis. 

Fractional Difference Operators 

Physical Model: Discrete Systems and Time Series Analysis 

Fractional difference operators are discrete analogs of fractional derivatives, used in numerical methods and time 

series analysis. For a discrete function 𝑓(𝑘), the fractional difference operator is defined as: 

𝛥𝑞
𝛼𝑓(𝑘) =∑(

𝛼

𝑗
)

𝑘

𝑗=0

[𝑓(𝑘) − 𝑓(𝑘 − 𝑗)], 

where 𝛥𝑞 is the q-difference operator. 

Theorem 50.  For a discrete power function 𝑓(𝑘) = 𝑘𝑝, the fractional difference operator is: 𝛥𝑞
𝛼𝑘𝑝 =

𝛤(𝑝+1)

𝛤(𝑝+𝛼+1)
𝑘𝑝+𝛼 . 

Remark 30.  Fractional difference operators are important for modeling and analyzing discrete systems and time 

series data, providing tools for extending fractional calculus to discrete contexts. 

Fractional Laplacian 

Physical Model: Anomalous Diffusion 

The fractional Laplacian is an extension of the Laplace operator to fractional orders, commonly used in the study of 

anomalous diffusion. It is defined as: 

(−𝛥)𝛼/2𝑓(𝑥) = 𝐶𝛼∫
𝑓(𝑥) − 𝑓(𝑦)

|𝑥 − 𝑦|𝑛+𝛼ℝ𝑛
 𝑑𝑦, 

where 𝐶𝛼 is a normalization constant. 

Theorem 51.  For a Gaussian function 𝑓(𝑥) = 𝑒
−
|𝑥|2

2𝜎2, the fractional Laplacian is: (−𝛥)𝛼/2𝑒
−
|𝑥|2

2𝜎2 =
2𝛼𝛤(

𝑛

2
+𝛼)

𝜋𝑛/2𝛤(𝛼)
(
1

𝜎2
)
𝛼

𝑒
−
|𝑥|2

2𝜎2 . 

Remark 31.  The fractional Laplacian is widely used in modeling anomalous diffusion and processes governed by 

Lévy flights or stable distributions. 

Fractional Poisson Process 

Physical Model: Waiting Times in Stochastic Processes 

The fractional Poisson process generalizes the standard Poisson process to fractional orders, used for modeling waiting 

times and other stochastic phenomena. It is characterized by a waiting time distribution with fractional characteristics. 

Theorem 53.  The probability distribution of the waiting time in a fractional Poisson process is given by: 𝑃(𝑇 > 𝑡) =

𝑒−𝜆𝑡
𝛼
, 

where 𝜆 is the rate parameter and 𝛼 is the fractional order. 
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Corollary 52.  The mean waiting time in a fractional Poisson process is: 𝔼[𝑇] =
1

𝜆1/𝛼
. 

Remark 32.  The fractional Poisson process is useful in modeling stochastic systems with waiting times that exhibit 

fractional-order behavior, providing a more flexible framework compared to the classical Poisson process. 

Variable-order Fractional Operators 

Physical Model: Systems with Dynamically Changing Orders 

Variable-order fractional operators allow the fractional order to vary with time or space, providing a more flexible 

modeling framework. For a variable-order fractional operator: 

𝐷𝑎+
𝛼(𝑡)𝑓(𝑡) =

𝑑

𝑑𝑡
𝐼𝑎+
𝛼(𝑡)𝑓(𝑡), 

where 𝛼(𝑡) is a function of time. 

Theorem 54.  For a time-dependent fractional derivative where 𝛼(𝑡) =
1

2
+

𝑡

2
, the operator is: 𝐷𝑎+

𝛼(𝑡)𝑓(𝑡) =
𝑑

𝑑𝑡
[∫ (𝑡 − 𝜏)𝛼(𝑡)−1

𝑡

𝑎
𝑓(𝜏) 𝑑𝜏]. 

Remark 33.  Variable-order fractional operators are useful in modeling systems where the fractional order changes 

dynamically, such as in adaptive control systems and time-varying processes. 

Fractional q-Calculus Operators 

Physical Model: Quantum Calculus and Special Functions 

Fractional q-calculus operators extend classical q-calculus to fractional orders, relevant in quantum calculus and 

special functions. For a function 𝑓(𝑥), the fractional q-derivative is defined as: 

𝐷𝑞
𝛼𝑓(𝑥) =

1

𝛤𝑞(𝛼)
∫ (𝑥 − 𝜏)𝑞

𝛼−1
𝑥

0

𝑓(𝜏) 𝑑𝜏, 

where 𝐷𝑞
𝛼 is the q-difference operator. 

Theorem 55.  For a q-power function 𝑓(𝑥) = 𝑥𝑝, the fractional q-derivative is: 𝐷𝑞
𝛼𝑥𝑝 =

𝛤𝑞(𝑝+1)

𝛤𝑞(𝑝+𝛼+1)
𝑥𝑝+𝛼 . 

Remark 34.  Fractional q-calculus operators are used in quantum calculus and special functions, extending the 

principles of fractional calculus to the q-calculus framework. 

Generalized Fractional Operators 

Physical Model: Tailored Applications in Various Fields 

Generalized fractional operators include various modifications of classical fractional operators, allowing for tailored 

applications in specific fields. For a generalized fractional operator, the definition is: 

𝐷𝑎+
𝛼 𝑓(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑎

𝜙(𝑡 − 𝜏)𝑓(𝜏) 𝑑𝜏, 

where 𝜙(𝑡 − 𝜏) is a general kernel function. 

Theorem 56.  For a specific kernel 𝜙(𝑡 − 𝜏) = 𝑒−𝛽(𝑡−𝜏), the generalized fractional operator is: 𝐷𝑎+
𝛼 𝑒−𝛽𝑡 =

𝛤(1+𝛼)

(𝛽+1)𝛼
𝑒−𝛽𝑡 . 
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Remark 35.  Generalized fractional operators provide flexibility in modeling diverse applications in fields such as 

economics, biology, and engineering, by tailoring the operators to specific needs and conditions. 

Applications in Specific Fields 

Physics 

Anomalous Diffusion 

Fractional calculus is used to model anomalous diffusion, where particles spread in a manner that deviates from 

classical Brownian motion. The fractional diffusion equation is given by: 

∂𝛼𝑢(𝑥, 𝑡)

∂𝑡𝛼
= 𝐷0

∂𝛽𝑢(𝑥, 𝑡)

∂𝑥𝛽
, 

where 0 < 𝛼 < 1 denotes the order of the time derivative and 0 < 𝛽 < 2 denotes the order of the spatial derivative. 

Theorem 57.  The solution to the fractional diffusion equation for an initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) (a Dirac delta 

function) is: 

𝑢(𝑥, 𝑡) =
1

𝛤(𝛼)(2𝐷0𝑡)
𝛼
∫ 𝑒

−
𝑥2

4𝐷0𝑡
∞

−∞

 𝑑𝑥. 

Remark 36.  This solution represents a Gaussian profile with a variance that grows sublinearly with time, indicating 

slower spreading compared to classical diffusion. 

Electromagnetism 

Fractional calculus can be applied to Maxwell’s equations to model anomalous electromagnetic wave propagation. 

For a fractional-order Maxwell’s equation: 

∂𝛼𝐄(𝑥, 𝑡)

∂𝑡𝛼
− 𝑐2∇ × 𝐁(𝑥, 𝑡) = 𝟎, 

where 𝛼 is the fractional order of time derivative and 𝐄 and 𝐁 are the electric and magnetic fields. 

Theorem 58.  For a plane wave solution, the fractional Maxwell’s equation can be written as: 

𝐄(𝑥, 𝑡) = 𝐄0𝑒
𝑖(𝜔𝑡−𝑘𝑥), 

 

where the wave frequency 𝜔 and wave number 𝑘 satisfy: 

𝜔𝛼 = 𝑐2𝑘𝛼 . 

Remark 37.  The fractional order affects the dispersion relation, leading to non-standard wave propagation 

characteristics. 

Engineering 

Control Systems 

Fractional-order controllers provide more flexible tuning for control systems. The fractional PI controller is defined 

as: 
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𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠𝛼
, 

where 𝐾𝑝 is the proportional gain, 𝐾𝑖 is the integral gain, and 𝛼 is the fractional order. 

Theorem 59.  For a plant transfer function 𝐺(𝑠) =
1

𝑠2+1
, the closed-loop transfer function with a fractional PI 

controller is: 

𝑇(𝑠) =
𝐺(𝑠)𝐶(𝑠)

1 + 𝐺(𝑠)𝐶(𝑠)
=

𝐾𝑝 +
𝐾𝑖
𝑠𝛼

𝑠2 + 1 + 𝐾𝑝 +
𝐾𝑖
𝑠𝛼

. 

Remark 38.  Fractional PI controllers can improve system performance and stability, particularly in systems with 

complex dynamics. 

Viscoelastic Materials 

Fractional calculus models the stress-strain relationship in viscoelastic materials. The fractional viscoelastic model is 

given by: 

𝜎(𝑡) = 𝐸0𝜀(𝑡) + 𝜂
∂𝛼𝜀(𝑡)

∂𝑡𝛼
, 

where 𝜎(𝑡) is the stress, 𝜀(𝑡) is the strain, 𝐸0 is the Young’s modulus, and 𝜂 is the viscosity. 

Theorem 60.  For a step input strain 𝜀(𝑡) = 𝜀0𝐻(𝑡), the stress response is: 

𝜎(𝑡) = 𝐸0𝜀0 + 𝜂
𝜀0

𝛤(1 − 𝛼)
𝑡𝛼−1. 

Remark 39.  The fractional derivative in the stress-strain relationship models the delayed response typical in 

viscoelastic materials. 

Biology 

Population Dynamics 

Fractional differential equations model biological populations with memory effects. The fractional population model 

is: 

∂𝛼𝑁(𝑡)

∂𝑡𝛼
= 𝑟𝑁(𝑡) (1 −

𝑁(𝑡)

𝐾
), 

where 𝑁(𝑡) is the population size, 𝑟 is the growth rate, and 𝐾 is the carrying capacity. 

Theorem 61.  For an initial condition 𝑁(0) = 𝑁0, the solution to the fractional logistic equation is: 

𝑁(𝑡) =
𝐾𝑁0

𝑁0 + (𝐾 − 𝑁0)𝑒
−𝑟𝑡𝛼

. 

Remark 40.  The fractional order 𝛼 affects the growth rate and time to reach equilibrium, modeling populations with 

non-exponential growth characteristics. 

Epidemiology 

Fractional calculus models the spread of diseases in populations with memory effects. The fractional SIR model is: 
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∂𝛼𝑆(𝑡)

∂𝑡𝛼
= −𝛽𝑆(𝑡)𝐼(𝑡), 

∂𝛼𝐼(𝑡)

∂𝑡𝛼
= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡), 

∂𝛼𝑅(𝑡)

∂𝑡𝛼
= 𝛾𝐼(𝑡), 

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are the susceptible, infected, and recovered populations, respectively, and 𝛽 and 𝛾 are the 

transmission and recovery rates. 

Theorem 62.  The solution for 𝑆(𝑡) in terms of 𝐼(𝑡) is: 

𝑆(𝑡) = 𝑆0 −
𝛽

𝛾
∫ 𝐼
𝑡

0

(𝜏) 𝑑𝜏. 

Remark 41.  The fractional derivative models the spread of infectious diseases with memory effects, capturing the 

complex dynamics of disease propagation. 

Economics 

Financial Modeling 

Fractional Brownian motion models asset prices in financial markets. The fractional Black-Scholes model for option 

pricing is: 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡) 𝑑𝑡 + 𝜎𝑆(𝑡) 𝑑𝑊𝐻(𝑡), 

where 𝑊𝐻(𝑡) is the fractional Brownian motion with Hurst parameter 𝐻. 

Theorem 63.  The option price under the fractional Black-Scholes model is given by: 

𝐶(𝑡) = 𝑒−𝑟(𝑇−𝑡)𝔼[max(𝑆(𝑇) − 𝐾, 0)], 

where 𝑟 is the risk-free rate, 𝐾 is the strike price, and 𝑇 is the maturity time. 

Remark 42.  Fractional Brownian motion provides a more accurate representation of market volatility and price 

dynamics compared to classical Brownian motion. 

Econometric Models 

Fractional integration is used in econometrics to model long-memory processes. The fractional ARFIMA model is: 

𝛷(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝛩(𝐵)𝜖𝑡 , 

where 𝐵 is the backshift operator, 𝑑 is the fractional integration parameter, 𝛷(𝐵) and 𝛩(𝐵) are polynomials, and 𝜖𝑡 
is white noise. 

Theorem 64.  For a stationary process, the autocorrelation function is: 

𝜌(ℎ) ∼ ℎ2𝑑−1, 

where ℎ is the lag. 

Remark 43.  Fractional ARFIMA models capture long-memory behavior in economic time series, providing better 

forecasts and understanding of economic dynamics. 
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ENGINEERING AND CONTROL SYSTEMS 

Fractional calculus has found applications in control systems, particularly in the design of fractional PID controllers. 

These controllers offer more flexibility and robustness compared to classical PID controllers. 

Biology and Medicine 

In biology, fractional models are used to describe anomalous diffusion in cells and tissues. The fractional diffusion 

equation is: 

∂𝛼𝐶(𝑥, 𝑡)

∂𝑡𝛼
= 𝐷

∂2𝐶(𝑥, 𝑡)

∂𝑥2
 

where 𝐶(𝑥, 𝑡) represents the concentration of a substance, and 𝐷 is the diffusion coefficient. 

Finance and Economics 

Fractional calculus is applied in finance for modeling memory effects in market volatility. The fractional Black-

Scholes model is one such application. 

INTERPRETATION AND DISCUSSION 

Versions of some fractional derivatives and the corresponding physical theories have been rigorously discussed in 

recent sections. This section provides interpretation of the findings from these models and their relevance to areas that 

may be pertinent in diverse fields. 

Anomalous Diffusion 

In this study we were able to demonstrate that anomalous diffusion can be modeled using fractional calculus. For 

example, the fractional algebra in diffusion equations by Riemann-Liouville and Caputo derivatives represent particles 

spread slower than intuitive view from CTRW. This is consistent with observations in the real world of subdiffusive 

phenomena, where mean squared displacement increases more slowly over time than linear. The interpretation is that 

fractional models are especially well-suited for describing the effects of complex medium on particle dynamics. 

Electromagnetism 

Fractional derivatives have been used to derive fractional Maxwell’s equations, which present wave propagation in 

memory or non-local materials from a new perspective of view when considered within the realm of electromagnetic 

theory. Newly proposed dispersion relations, constructed from such Riesz and Weyl fractional operators provide 

insights into how or where to invoke there quantifications in order to ameliorate classical models for modeling both 

dispersive mechanisms along with attenuation processes which may be overlooked by the standard formulations thus 

providing a better understanding of wave signal propagation even within quite complex material media like 

metamaterials displaying anomalous dispensing properties. 

Control Systems 

Fractional calculus, in particular fractional PI (FPI) and Fractional PID controllers bring great benefits to control 

systems. The results show that the new fractional-order controllers offer more flexibility in adjusting system dynamics 

than traditional integer order systems, which helps improve its performance. Ability to model and compensate Non-

integer order dynamics which ensures higher level of stability and robustness in complex control Autodesk. This is 

especially important in systems with time delays or non-linearities, which regular models may be hindered by. 

Viscoelastic Materials 

Modeling of a significant amount of materials (e.g., polymers) under stress require the utilization fractional derivatives 

to account for inherent visco-elasticity. The results obtained by the fractional calculus models demonstrate that more 

accurate time values can be found while modelling this delayed stress–strain response in comparison to classical 
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forms. Modeling materials with complex time dependent symmetry breaking and heterogeneity is not feasible using 

traditional models, warranting a representation that respects the underlying physics. 

Population Dynamics 

The fractional calculus model is commonly employed in population dynamics, such as the well−known application to 

a fraction logistic growth model which more accurate predictions of biological phenomena are realized when memory 

effects are considered. In Fig 4C–F, all fractional models display distinct deviations from classical exponential growth 

as a consequence of the convolution with past states affecting its current dynamics. This approach gives us a clear 

insight of when and why the population trends concerning historical effects are going to dominate future growth rates 

in lotic ecosystems. 

Epidemiology 

Fractional SIR models with memory effects produce better predictions of disease spread and intervention benefits in 

epidemiological modeling. The findings suggest that the inclusion of fractional models that take time-delayed 

responses in disease dynamics into consideration helps accurately predict, and therefore control strategies inklingies. 

This is especially important in understanding the convoluted transmission of diseases and considering how well public 

health measures work. 

Financial Modeling 

The Black-Scholes model of fractional generalization brings a new idea in the sphere of classical financial theories, 

namely behavioral aspects of asset pricing by incorporating fractional dynamics. The conclusion shows that a 

fractional derivative can fit to real data more accurately, not only it has ability of fitting well but retains volatility and 

price dynamics which traditional models cannot capture. Implications for Risk Management and Option Pricing – 

These findings provide a comprehensive, accurate prism in which to model risk management options or pricing 

strategies that help build forward performance forecasts. 

Econometric Models 

In econometrics, fractional ARFIMA models show the long-memory nature of many economic time series making it 

easier to forecast and analyze economic behavior. These results suggest that fractional models can better account 

accounting for the long-memory behavior of past values, and thus offer a more detailed description of longer-run 

economic trends and cycles. 

DISCUSSION 

Comparison to Classical Models 

The advantages of fractional calculus in handling complex problems are very clearly illustrated bythe comparison 

between results obtained using fractional and classical models. There are many physical, microscopic and mesoscopic 

mechanisms embodying memory effects or non-standard dynamics which can be better characterized with fractional 

operators that account for the realization of both long and short memories in multi-dimensional interacting systems. 

This comparison highlights the potential of fractional calculus in handling phenomena that may be not properly 

described by classical integer-order models. 

IMPLICATION FOR RESEARCH AND PRACTICE 

This versatility makes it clear that applications of fractional order calculus in different fields may improve our 

understanding of complex systems. Fractional models provide new valuable insights and better predictions in different 

areas, from physics or engineering to biology and economics. The results show that we should include the derivative 

in the theoretical research and applications, as well obtain to complete previous studies of complex phenomena. 
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Challenges and Limitations 

Fractional calculus does have its advantages, yet it introduces some challenges. Fractional derivatives can be 

complicated to interpret and apply, often requiring domain-specific knowledge as well as computational resources. 

These new parameters introduced in fractional models might be making their fitting and interpretation messy. These 

challenges need to be addressed for both the advancement of fractional calculus as well in order that greater good can 

come from using it across various domains. 

Future Directions 

Future studies shall improve the methods of calculation in fractional calculus, new model fitting techniques and 

applications. Combining these derivations with the novel methods of other advanced mathematical methodologies like 

ML and optimization algorithms have far more increased possibilities for fractional calculus. Fractional calculus and 

other scientific fields with interdisciplinary approaches could provide new perspectives, strengthening fractional 

calculus in the union of theory as well practical applications. 

CONCLUSION 

The investigation and analysis of the fractional calculus models showed us a great potential to help in understanding 

more phenomena about complex systems. Through detailed analysis in this paper, we illustrate the benefits of 

fractional models from diverse domains and specifically describe how these can help to handle phenomena 

unfaithfully captured by classical model. Concurrently, fractional calculus research and subsequent developments will 

provide additional analyses to help establish more dependable models, assist with predictions that are closer to actual 

results through improved preparation in various fields. 
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